60 research outputs found

    Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling

    Get PDF
    Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 to 2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER.Peer ReviewedPostprint (published version

    Simulation using MIC co-processor on Helios

    No full text

    Extracted current saturation in negative ion sources

    No full text
    International audienceThe extraction of negatively charged particles from a negative ion source is one of the crucial issues in the development of the neutral beam injector system for future experimental reactor ITER. Full 3D electrostatic particle-in-cell Monte Carlo collision code—ONIX [S. Mochalskyy et al., Nucl. Fusion 50, 105011 (2010)]—is used to simulate the hydrogen plasma behaviour and the extracted particle features in the vicinity of the plasma grid, both sides of the aperture. It is found that the contribution to the extracted negative ion current of ions born in the volume is small compared with that of ions created at the plasma grid walls. The parametric study with respect to the rate of negative ions released from the walls shows an optimum rate. Beyond this optimum, a double layer builds-up by the negative ion charge density close to the grid aperture surface reducing thus extraction probability, and therefore the extracted current. The effect of the extraction potential and magnetic field magnitudes on the extraction is also discussed. Results are in good agreement with available experimental data
    corecore